EssayNICE | 24/7 Homework Help

Essaynice Will Help You Write Your Essays and Term Papers

Answered » You can buy a ready-made answer or pick a professional tutor to order an original one.

Suppose that the probability that a passenger will miss a flight is 0.0901. Airlines do not like flights with empty seats, b it is also not desirable to have overbooked flights because passengers must be “bumped” from the flight. Suppose that an airplane has a seating capacity of 54 passengers. (a) If 56 tickets are sold, what is the probability that 55 or 56 passengers show up for the flight resulting in an overbooked flight? (b) Suppose that 60 tickets are sold. What is the probability that a passenger will have to be “bumped”? (c) For a plane with seating capacity of 250 passengers, what is the largest number of tickets that can be sold to keep the probability of a passenger being “bumped” below 1%?

by | Sep 8, 2023 | statistics

Suppose that the probability that a passenger will miss a flight is 0.0901. Airlines do not like flights with empty seats, but
it is also not desirable to have overbooked flights because passengers must be "bumped" from the flight. Suppose that
an airplane has a seating capacity of 54 passengers.
(a) If 56 tickets are sold, what is the probability that 55 or 56 passengers show up for the flight resulting in an
overbooked flight?
(b) Suppose that 60 tickets are sold. What is the probability that a passenger will have to be "bumped"?
(c) For a plane with seating capacity of 250 passengers, what is the largest number of tickets that can be sold to keep
the probability of a passenger being "bumped" below 1%?
expand button
Transcribed Image Text:Suppose that the probability that a passenger will miss a flight is 0.0901. Airlines do not like flights with empty seats, but
it is also not desirable to have overbooked flights because passengers must be “bumped” from the flight. Suppose that
an airplane has a seating capacity of 54 passengers.
(a) If 56 tickets are sold, what is the probability that 55 or 56 passengers show up for the flight resulting in an
overbooked flight?
(b) Suppose that 60 tickets are sold. What is the probability that a passenger will have to be “bumped”?
(c) For a plane with seating capacity of 250 passengers, what is the largest number of tickets that can be sold to keep
the probability of a passenger being “bumped” below 1%?
  

HOME TO CERTIFIED WRITERS

Why Place An Order With Us?

  • Certified Editors
  • 24/7 Customer Support
  • Profesional Research
  • Easy to Use System Interface
  • Student Friendly Pricing

Have a similar question?

PLAGIRAISM FREE PAPERS

All papers we provide are well-researched, properly formatted and cited.

TOP QUALITY

All papers we provide are well-researched, properly formatted and cited.

HIGHLY SECURED

All papers we provide are well-researched, properly formatted and cited.

Open chat
1
Powered by essaynice
Hello! Welcome to to our whatapp support.
We offer READY solutions, HIGH QUALITY PLAGIARISM FREE essays and term-papers.

We are online and ready to help